Biomechanical characterization of the urethral musculature.

نویسندگان

  • Ron J Jankowski
  • Rachelle L Prantil
  • Michael B Chancellor
  • William C de Groat
  • Johnny Huard
  • David A Vorp
چکیده

Rigorous study of the associations between urethral structural anatomy and biomechanical function is necessary to advance the understanding of the development, progression, and treatment of urethral pathologies. An ex vivo model was utilized to define the relative biomechanical contributions of the active (muscle) elements of the female urethra relative to its passive (noncontractile) elements. Whole urethras from female, adult rats were tested under a range of applied intraluminal pressures (0 to 20 mmHg) as a laser micrometer simultaneously measured midurethral outer diameter. Active tissue characterization was performed during induced contraction of either smooth muscle alone (N(omega)-nitro-l-arginine, phenylephrine), striated muscle alone (sodium nitroprusside, atropine, hexamethonium, acetylcholine), or during collective activation of both muscles (N(omega)-nitro-l-arginine, phenylephrine, acetylcholine). The subsequent collection of paired passive biomechanical responses permitted the determination of parameters related to intrinsic muscle contractile function. Activation of each muscle layer significantly influenced the biomechanical responses of the tissue. Measures of muscle responsiveness over a wide range of sustained opposing pressures indicated that an activated striated muscle component was approximately one-third as effective as activated smooth muscle in resisting tissue deformation. The maximum circumferential stress generated by the striated muscle component under these conditions was also determined to be approximately one-third of that generated by the smooth muscle (748 +/- 379 vs. 2,229 +/- 409 N/m(2)). The experiments quantitatively reveal the relative influence of the intrinsic urethral smooth and striated muscle layers with regard to their effect on the mechanical properties and maximum functional responses of the urethra to applied intralumenal stresses in the complete absence of extrinsic influences.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development of an experimental system for the study of urethral biomechanical function.

Despite its principal mechanical function in the storage and release of urine, the biomechanical properties of the urethra have remained largely unexplored. The purpose of this study was to develop and validate an experimental model that can be used for evaluating whole urethral tissue in such a manner. Bladder-urethral specimens were excised from halothane-anesthetized female rats and mounted ...

متن کامل

Anatomy of urinary continence and neurogenic incontinence

Normal anatomy: urinary continence The muscular apparatus of the vesicourethral unit Elbadawi proposed that the mammalian muscular apparatus of micturition is composed of four functional units, each of which appears to have a specifi c role in both the storage and voiding phases [1]. These units include the bladder body detrusor, lissosphincter, ureterotrigonal muscle and urethral rhabdosphinct...

متن کامل

Ion channels of the mammalian urethra

The mammalian urethra is a muscular tube responsible for ensuring that urine remains in the urinary bladder until urination. In order to prevent involuntary urine leakage, the urethral musculature must be capable of constricting the urethral lumen to an extent that exceeds bladder intravesicular pressure during the urine-filling phase. The main challenge in anti-incontinence treatments involves...

متن کامل

Ex vivo biomechanical properties of the female urethra in a rat model of birth trauma.

Stress urinary incontinence (SUI) is the involuntary release of urine during sudden increases in abdominal pressures. SUI is common in women after vaginal delivery or pelvic trauma and may alter the biomechanical properties of the urethra. Thus we hypothesize that injury due to vaginal distension (VD) decreases urethral basal tone and passive stiffness. This study aimed to assess the biomechani...

متن کامل

Ankle musculature latency measurement to varing angles of sudden external oblique perturbation in normal functionally unstable ankles

 Abstract Background: Several studies have examined the reflex response of ankle musculature to sudden inversion in noninjured and injured subjects. To date, there have been no studies to determine the effect of versatile degrees & conditions of perturbation on the ankle musculature latency. The purpose of this study was to measure and determine whether there was a difference in ankle musculatu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Renal physiology

دوره 290 5  شماره 

صفحات  -

تاریخ انتشار 2006